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Abstract

The author presents a model based on multi-step nucleation for the heterogeneous decom-
positions described by nucleation and growth phenomena, taking into account the fractal na-
ture of the nuclei,

Keywords: fractals, growth, nucleation

Introduction

An analysis of the heterogeneous reactions occurring in powders submitted to
grinding due to Ozao and Ochiai [1] led to the following conclusions:

— the mechanical reduction of the particle sizes leads to a fractal distribution
of them given by the function P(X,f) where X=x/x. (x — the size of the particle
scaled with a characteristic constant size, x.) and ¢ is the grinding time, with the
form: P(X,f)aX” the exponent n being a material constant,

—a particle size distribution function of a solid powder described by the men-
tioned power law indicates the self similarity of the particles and correspond-
ingly their fractal character,

— the energy associated with the breakage is described by experimentally
verified laws derived by considering the fractal character of the particles.

Taking into account the results of their analysis, Ozao and Ochiai [1] suggest
the reconsideration of the particular forms of the differential conversion function
Sf{e) in the general rate equation:

do
5 = Ke) (1)
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which describes heterogeneous reactions, particularly heterogeneous decompo-
sitions in solid—gas systems such as:

As = BoCq (1)

This note is dedicated to reactions of the form (I) whose kinetics are described
by nucleation-growth mechanisms.

According to the classical theory regarding the kinetics of such reactions, the
total volume of the new solid phase, B, generated through reaction (I} at the mo-
ment ¢ is given by the relationship [2, 3, 4]

s

t]t
vy = 7! [Gryax [‘z—’:’j dy (2)
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where T is a shape factor which equals 1 for the growth of nuclei in one dimen-
sion, ® for the two-dimensional growth and 47m/3 for the three-dimensional
growth, X equals 1, 2 or 3 for the linear, surface or volome growth, N the nimher
of nuclei generated at the moment 7, dN/d¢ the rate of nucleation and G(x) the
growth rate. One can notice that in relationship (2) the expression

A
t

[6(xax
¥

describes the generalized volume of a nucleus which began to grow at the mo-
ment . [t is easy to see that for various laws of nucleation and growth, relation-
ship (2) leads to various forms of the dependence V(7). As V(¢) is directly propor-
tional to the degree of conversion, ou(z), it turns out that Eq. (2) is in fact the most
general integral kinetic equation which describes reactions controlled by nuclea-
tion-growth phenomena.

In the following we shall consider the multi-step temporal evolution of the
number of nuclei.

N=y (3)

where v is a constant and the exponent  represents the number of successive
steps necessary for the formation of a stable nucleus. From relationship (3) the
rate of nucleation is given by

dN -
==y (4)

As far as the growth rate is concerned, we shall consider it as constant i.e.,
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G(x) = k3 = const. (3)

Taking into account relationships (4) and (5), volume V(7)) according to (2)
takes the form:

V@) = Tftkatt - )P pry® " dy (6)

[+]

Operating a binomial development followed by integration term by term one
obtains:

V(t):Tk;‘{]— A ML B, }M 7

B+1 20 B+2 7

Introducing the notations

A MM 1) B .
7b{luﬁ+l+ . B+2i"}—c ®

=P+ ©)
relationship (7) can be retranscribed in the form:

Viy=Cr (10)
or as V{#) « o) it follows that

a() = Ct° {11)

Taking into account the meanings of f§ and A in relationship (9), the exponent 7
should be characterized by integer values. However, among the experimentally
determined values of n, fractional values have been found. Thus for the decom-
position of silver oxalate the determined values of n lie in the range 3-4 [5],
while for the decomposition of lead azide the determined values lie in the range
2.14-3.67 {6]). Some supplements of the nucleation-growth theory based on the
idea according to which small nuclei grow more slowly than the big ones allowed
to explain the fractional values of a. In our opinion another explanation could be
given by taking mto account the fractal character of the nuclei. Under such con-
ditions relationship (6) and (7) turn into:

V() = Tkt - y)I°Byy® ' dy (12)

0
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and

g, DB DD-1) B pro
V(t)n—TDkzj{l ﬂ+1+ o B+2i..}t (13)

where D is the fractal dimension of the nucleus (1<D<3) and Ty, is the ‘fractal’
shape factor which obviously differs from 7. Taking again into account the pro-
portionality between V(7) and ¢i(z) and introducing the notations:

ﬁ@{b—DB+Dw_U s +~}=€ (14)

B+1 20 B+27

B+D=n’ (15)

relationship (13) turns into:

an=Cr (16)

an integral kinetic equation which can be compared with (11) but in which, tak-
ing into account the meaning of the fractal dimension D and according to (15),
the exponent 1" should be fractional.

A more general way of integration either in (6} or in {12} is based on the
change of variables:

y=tz (17)

Under such conditions relationship (6) and (12) turn respectively into

V() = yBTKABOL + LBYP (18

and
V(H) = yRTokPB(D + 1,p)*D (19)

where B(p, g) is the Euler integral of the first kind. It is easy to notice the equiva-
lence of relationships (18) and (19) with relationships (7) and (13) from the
standpoint of the dependences V(¢) and correspondingly o).

Relationships (18) and (19) are more general than a similar relationship de-
rived by Ozao and Ochiai [1] which considered only the case characterized by
B=1 which corresponds to monostep nucleation.

From relationship (16) through rearrangement and differentiation one obtains
successively:
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PR 20
1-D-fi
diee o PP dot 2n
D+j-1
do  “RlE”
et +B
ke (22)

a rate equation which for §=1 takes the particular form derived by Ozao and
Ochiai [1].

For the case of interactions between nuclei which overlap during their growth
as shown by Avrami [6],

dor = 3¢ (23)
1-a

where o is the degree of conversion in the absence of interactions. From (23)
through integration one obtains

o' =-In(l -w (24)
a relationship which leads to:

doo do’

2 - 25

T CrT (23)

Considering that de’/dr on the right hand side of Eq. (25) is given by an equation
of the form (22) and taking into account (24}, the following rate equation can be
obtained:

do DB
ar = (1= 0= In(1 - )= (26)

aresult which, for B=1, takes the particular form derived by Ozao and Ochiai {1].

Conclusions

General kinetic equations for heterogeneous solid—gas decomposition de-
scribed by nucleation—growth mechanisms have been derived considering the
fractal nature of the nuclei and a multistep nucleation rate. The derived equations
have the particular forms derived by Ozao and Ochiai for monostep nucleation
and lead to results in qualitative agreement with experimental data.
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